List of data, formulae and relationships

Acceleration of free fall

$$g = 9.81 \text{ m s}^{-2}$$

(close to Earth's surface)

Gravitational field strength

$$g = 9.81 \text{ N kg}^{-1}$$

(close to Earth's surface)

Unit 1

Mechanics

Kinematic equations of motion

$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces

$$\Sigma F = ma$$

$$g = \frac{F}{m}$$

$$W = mg$$

Momentum

$$p = mv$$

Moment of force

$$moment = Fx$$

Work and energy

$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

Power

$$P = \frac{E}{t}$$

$$P = \frac{W}{t}$$

Efficiency

Materials

$$\rho = \frac{m}{V}$$

Stokes' law

$$F = 6\pi \eta r v$$

Hooke's law

$$\Delta F = k\Delta x$$

$$\Delta E_{\rm el} = \frac{1}{2} F \Delta x$$

Young modulus

$$E = \frac{\sigma}{\varepsilon}$$
 where

Stress
$$\sigma = \frac{F}{A}$$

Strain
$$\varepsilon = \frac{\Delta x}{x}$$